Using the principles of density functional theory (DFT) and nonequilibrium Green’s function (NEGF), We thoroughly researched carbon-doped zigzag boron nitride nanoribbons (ZBNNRs) to understand their electronic behavior and transport properties. Intriguingly, we discovered that careful doping can transform carbon-doped ZBNNRs into a spintronic nanodevice with distinct transport features. Our model showed a giant magnetoresistance (GMR) up to a whopping 105\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$^5$$\\end{document} under mild bias conditions. Plus, we spotted a spin rectifier having a significant rectification ratio (RR) of 104\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$^4$$\\end{document}. Our calculated transmission spectra have nicely explained why there’s a GMR up to 105\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$^5$$\\end{document} for spin-up current at biases of -1.2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$-1.2$$\\end{document} V, -1.1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$-1.1$$\\end{document} V, and -1.0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$-1.0$$\\end{document} V, and also accounted for a GMR up to 103\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$^3$$\\end{document}–105\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$^5$$\\end{document} for spin-down current at biases of 1.0 V, 1.1 V, and 1.2 V. Similarly, the transmission spectra elucidate that at biases of 1.0 V, 1.1 V, and 1.2 V for spin-up, and at biases of 1.1 V and 1.2 V for spin-down in APMO, the RRs reach 104\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$^4$$\\end{document}. Our research shines a light on a promising route to push forward the high-performance spintronics technology of ZBNNRs using carbon atom doping. These insights hint that our models could be game-changers in the sphere of nanoscale spintronic devices.