Artificial heterostructures are typically created by layering distinct materials, thereby giving rise to unique characteristics different from their individual components. Herein, two-dimensional α-MnSe nanosheets with a non-layered structure were fabricated on Ga0.6Fe1.4O3 (GFO) films. The superior crystalline properties of MnSe/GFO heterostructures were confirmed through structural and morphological analyses. The remanent polarization is around 1.5 μC/cm2 and the leakage current density can reach 2 × 10−3 A/cm2 under 4 V. In addition, the piezo-response force microscopy amplitude and phase images further supported the ferroelectric property. The significant improvement of coercive field and saturated magnetization, along with the antiparallel signals of Mn and Fe ions observed through synchrotron X-ray analyses, suggest the presence of magnetic interaction within the MnSe/GFO heterostructure. Finally, the excellent photodetector with a photo detectivity of 6.3 × 108 Jones and a photoresponsivity of 2.8 × 10−3 A·W−1 was obtained under 532 nm in the MnSe/GFO heterostructure. The characteristics of this heterostructure, which include multiferroic, magnetic exchange bias effect, and photodetection capabilities, are highly beneficial for multifunctional devices.
Read full abstract