Rice grain shape is a major determinant of rice market value and the end-use. We mapped quantitative trait loci (QTL) for grain shape traits in a bi-parental recombinant inbred line population (Trenasse/Jupiter) and discovered two major grain length QTLs—qGL3.1 and qGL7.1. Previously, a major grain shape gene GS3 was reported in the qGL3.1 region and grain length gene GL7 was reported to be encompassing qGL7.1 locus. The re-sequencing SNP data on the International Rice Research Institute (IRRI) 3K Rice Genome Project (RGP) panel were obtained from the IRRI SNP-Seek database for both genes and haplotype diversity was characterized for each gene in this diverse panel. United States rice germplasm was not well represented in the IRRI 3K RGP database. Therefore, a minimum SNP set was identified for each gene that could differentiate all the characterized haplotypes. These haplotypes in the 3K RGP panel were screened across 323 elite U.S. genotypes using the minimum SNP set. The screening of haplotypes and phenotype association confirmed the role of GS3 under qGL3.1. However, screening of the GL7 haplotypes in the U.S. germplasm panel showed that GL7 did not play a role in qGL7.1, and in addition, GL7.1 did not segregate in the Trenasse/Jupiter RIL population. This concluded that qGL7.1 is a novel QTL discovered on chr7 for grain shape in the Trenasse/Jupiter RIL population. A high-throughput KASP-based SNP marker for each locus (GS3 and qGL7.1) was identified and validated in elite U.S. rice germplasm to be used in an applied rice breeding program.
Read full abstract