Based on the basic theoretical framework of the Bi-directional Evolutionary Structural Optimization method (BESO) and the Solid Isotropic Material with Penalization method (SIMP), this paper presents a multiscale topology optimization method for concurrently optimizing the sandwich structure at the macro level and the core layer at the micro level. The types of optimizations are divided into macro and micro concurrent topology optimization (MM), macro and micro gradient concurrent topology optimization (MMG), and macro and micro layered gradient concurrent topology optimization (MMLG). In order to compare the multiscale optimization method with the traditional macroscopic optimization method, the sandwich simply supported beam is illustrated as a numerical example to demonstrate the functionalities and superiorities of the proposed method. Moreover, several samples are printed through micro-nano 3D printing technology, and then the static three-point bending experiments and the numerical simulations are carried out. The mechanical properties of the optimized structures in terms of deformation modes, load-bearing capacity, and energy absorption characteristics are compared and analyzed in detail. Finally, the multiscale optimization methods are extended to the design of 2D sandwich cantilever beams and 3D sandwich fully clamped beams.
Read full abstract