This paper studies the dynamics of a class of host-parasitoid models with host refuge and the strong Allee effect upon the host population. Without the parasitoid population, the Beverton–Holt equation governs the host population. The general probability function describes the portion of the hosts that are safe from parasitism. The existence and local behavior of solutions around the equilibrium points are discussed. We conclude that the extinction equilibrium will always have its basin of attraction which implies that the addition of the host refuge will not save populations from extinction. By taking the host intrinsic growth rate as the bifurcation parameter, the existence of the Neimark–Sacker bifurcation can be shown. Finally, we present numerical simulations to support our theoretical findings.
Read full abstract