Abstract

This paper is devoted to the study of a generalized modified version of the well-known Beverton-Holt equation in ecology. The proposed model describes the population evolution of some species in a certain habitat driven by six parametrical sequences, namely, the intrinsic growth rate (associated with the reproduction capability), the degree of sympathy of the species with the habitat (described by a so-called environment carrying capacity), a penalty term to deal with overpopulation levels, the harvesting (fishing or hunting) regulatory quota, or related to use of pesticides when fighting damaging plagues, and the independent consumption which basically quantifies predation. The independent consumption is considered as a part of a more general additive disturbance which also potentially includes another extra additive disturbance term which might be attributed to net migration from or to the habitat or modeling measuring errors. Both potential contributions are included for generalization purposes in the proposed modified generalized Beverton-Holt equation. The properties of stability and boundedness of the solution sequences, equilibrium points of the stationary model, and the existence of oscillatory solution sequences are investigated. A numerical example for a population of aphids is investigated with the theoretical tools developed in the paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.