Long-chain fatty acids (LCFAs) in leaves have attracted attention as nutritious phytochemicals and olfactory signals that influence the behavior and growth of herbivorous insects. In recognition of the negative effects of increasing tropospheric ozone (O3) levels on plants, LCFAs can be altered through peroxidation by O3. However, how elevated O3 changes the amount and composition of LCFAs in field-grown plants is still unknown. We investigated palmitic, stearic, oleic, linoleic, linolenic LCFAs in the two leaf types (spring and summer) and two stages (early and late stage after expansion) of Japanese white birch (Betula platyphylla var. japonica) after a multi-year O3 exposure on the field. Summer leaves exhibited a distinct composition of LCFAs under elevated O3 at the early stage, whereas both stages of spring leaves did not exhibit significant changes in LCFAs composition by elevated O3. In the spring leaves, the amounts of saturated LCFAs significantly increased at the early stage, however, the amount of total, palmitic, and linoleic acids at the late stage were significantly decreased by elevated O3. Summer leaves had a lower amount of all LCFAs at both leaf stages. Regarding the early stage of summer leaves, the lower amount of LCFAs under elevated O3 was possibly due to O3-suppressed photosynthesis in the current spring leaves. Furthermore, the decrease ratio of spring leaves over time was significantly increased by elevated O3 in all LCFAs, whereas summer leaves did not exhibit such an effect. These findings suggest that further studies should be conducted to reveal the biological functions of LCFAs under elevated O3, considering the leaf type- and stage-dependent changes of LCFAs.
Read full abstract