The protein synthesis elongation factors Tu and Ts are responsible for binding aminoacyl-transfer ribonucleic acid (RNA) to the ribosome. In addition, they perform an undefined function, as the EF-Tu.Ts complex, in the RNA phage RNA replicases. In an effort to obtain insight into these two apparently unrelated roles, we purified the elongation factors from Caulobacter crescentus and compared them to the analogous Escherichia coli polypeptides. Although most physical and functional characteristics were found to be similar, significant differences were found in the molecular weight of EF-Ts and relative affinities of guanine nucleotides, sensitivity to trypsin cleavage, and rate of heat denaturation of EF-Tu. The antibiotic kirromycin was active with EF-Tu from both bacterial species. When C. crescentus EF-Tu.Ts was substituted for the E. coli elongation factors in Q beta phage RNA replicase, an enzyme capable of apparently normal RNA synthetic activity was formed.
Read full abstract