Diabetes mellitus is clinically defined by chronic hyperglycemia. Sex differences in the presentation and outcome of diabetes exist with premenopausal women having a reduced risk of developing diabetes, relative to men, or women after menopause. Accumulating evidence shows a protective role of estrogens, specifically 17-beta estradiol, in the maintenance of pancreatic beta cell health; however, the mechanisms underlying this protection are still unknown. To elucidate these potential mechanisms, we used a pancreatic beta cell line (BTC6) and a mouse model of hyperglycemia-induced atherosclerosis, the ApoE-/-:Ins2+/Akita mouse, exhibiting sexual dimorphism in glucose regulation. In this study we hypothesize that 17-beta estradiol protects pancreatic beta cells by modulating the unfolded protein response (UPR) in response to endoplasmic reticulum (ER) stress. We observed that ovariectomized female and male ApoE-/-:Ins2+/Akita mice show significantly increased expression of apoptotic UPR markers. Sham operated female and ovariectomized female ApoE-/-:Ins2+/Akita mice supplemented with exogenous 17-beta estradiol increased the expression of adaptive UPR markers compared to non-supplemented ovariectomized female ApoE-/-:Ins2+/Akita mice. These findings were consistent to what was observed in cultured BTC6 cells, suggesting that 17-beta estradiol may protect pancreatic beta cells by repressing the apoptotic UPR and enhancing the adaptive UPR activation in response to pancreatic ER stress.
Read full abstract