AbstractIn this study, a numerical solution of the velocity and heat transfer on the magnetohydrodynamic suction–injection model of viscous fluid flow has been studied. We use the differential transformation method and Bernoulli wavelet method to solve the highly nonlinear governing equations; applying appropriate similarity transformations and reducing governing equations to highly nonlinear coupled ordinary differential equations. The objective of this analysis is to determine how the suction parameter, Hartmann number, squeeze number, thermophoresis parameter, and Prandtl number affect the velocity and temperature profiles. When the current findings are compared with those that have already been published in the literature, confident suppositions are made, and it is discovered that there is considerable agreement. Graphs have been used to discuss the influence of nondimensional characteristics on velocity and temperature.