Solution behaviour prevailing in L-Asparagine in two aqueous ionic liquid solutions, namely (Benzyl tri–methyl ammonium chloride; Benzyl tri-ethyl ammonium chloride) have been studied by investigation of physico-chemical parameters; density, viscosity, refractive index, conductance and surface tension measurement respectively. The nature of interactions occurring in the solution have been calculated on the basis of apparent molar volume, viscosity A and B-coefficient, molar refraction at 298.15K,303.15K,308.15K and at 0.001m, 0.003m, 0.005m concentrations. The limiting apparent molar volumes (φV0) obtained from Masson equation, viscosity parameters, A and B coefficients obtained from Jones-Doles equation, Molar refraction (RM) from the Lorentz-Lorenz equation that describe the nature of solute-solute and solute-solvent interactions in the solution. Specific Conductance of the experimental solution, which applied to ascertain the ionic nature of the system. The different thermodynamic data, Δμ10≠, Δμ20≠, ΔH0≠, and TΔS0≠ also suggest the presence of strong interactions in the studied systems. The various types of interactions existing among amino acids in presence of ionic liquids which are the protein backbone would advance a many-dimensional challenge in the arena of solution chemistry. Studies of such systems could be forward-thinking further using the correlated results of the investigation.