Thrombin exhibits a restricted specificity, relative to plasmin, trypsin, and chymotrypsin, for a series of derivatives of the titrant substrate p-nitrophenyl- p′-guanidinobenzoate (NPGB). Substitution on the beta guanidino nitrogen of NPGB with an n-butyl, n-hexyl, cyclo-hexyl, or benzyl residue does not prevent the esterolytic cleavage of these derivatives but does markedly alter their substrate properties with the four enzymes investigated. All four enzymes cleave NPGB at equivalent concentrations by releasing p-nitrophenol as pre-steady-state burst reactions followed by its steady-state production. Both chymotrypsin and trypsin similarly display burst reactions with the derivatives at corresponding concentrations. The acyl-enzyme intermediates formed with chymotrypsin, however, are more stable for the derivatives than for NPGB, and those formed with trypsin are less stable. In contrast, plasmin and thrombin exhibit incomplete burst reactions with the derivatives at these concentrations. Except for the cyclo-hexyl derivative, with which plasmin does not react, the derivatives relative to NPGB were cleaved faster by plasmin than by thrombin. These cleavages with thrombin, moreover, were competitively inhibited by benzamidine. Kinetic data obtained for thrombin further indicated that the substituent groups of derivatives hindered the initial formation of enzyme-substrate complexes. These results suggest that thrombin and, most likely, plasmin have restricted primary binding-site regions for small molecule substrates which do not readily accommodate bulky substituent groups. In addition, increasing concentrations of glycerol were found to greatly alter the esterolytic properties of thrombin for the compounds studied. This effect was demonstrated by increased deacylation rates with NPGB and by decreased cleavage rates with the n-butyl derivative.
Read full abstract