The new Cu(II) carboxylate complex, aqua(2,2'-bipyridine-κ2N,N')bis(4-methylbenzoato-κO)copper(II) [Cu(4-mba)2(bipy)(H2O)] (4-mba: 4-methylbenzoate, bipy: 2,2'-bipyridine) was synthesized, and the molecular structure of the complex was characterized by the single crystal X-ray diffraction technique. The X-ray diffraction analysis indicated that the asymmetric unit comprises an independent molecule. Crystal data for [Cu(4-meb)2(2,2-bipy)(H2O)]: Triclinic, space group P-1 (no. 2), a = 7.0452(13) Å, b = 11.260(2) Å, c = 16.635(3) Å, α = 103.543(7)°, β = 91.002(7)°, γ = 104.106(6)°, V = 1240.4(4) Å3, Z = 2, T = 296 K, μ(MoKα) = 0.918 mm-1, Dcalc = 1.360 g/cm3, 51364 reflections measured (5.054° ≤ 2Θ ≤ 57.38°), 6258 unique (Rint = 0.0398, Rsigma = 0.0284) which were used in all calculations. The final R1 was 0.0392 (I > 2σ(I)) and wR2 was 0.1021 (all data). The Cu(II) ion was found to be coordinated with two nitrogen atoms of the 2,2'-bipyridine ligand, two oxygen atoms of the 4-methyl benzoate molecule, and one oxygen atom of the aqua ligand. In the three-dimensional supramolecular architecture, molecules are connected through pairs of O-H···O and C-H···O intermolecular interactions, consisting of chains. The molecule also demonstrates Cg···Cg intermolecular interactions between six-membered rings of 2,2'-bipyridine.
Read full abstract