Catalytic oxidation is a promising method for removing harmful volatile organic compounds (VOCs). Therefore, exploring high-efficiency catalysts for catalyzing VOCs is of great significance to the realization of an environment-friendly and sustainable society. Here, a series of 3D@2D constructed Al2O3@CoMn2O4 microspheres with a hollow hierarchical structure supporting Pd nanoparticles was successfully synthesized. The introduction of hollow Al2O3 for the in situ vertical growth of 2D CMO spinel materials constructs a well-defined core − shell hollow hierarchical structure, leading to larger specific surface area, more accessible active sites and promoted catalytic activity of support material. Additionally, theoretical calculations also indicate that the addition of Al2O3 as the support material strengthens the adsorption of toluene and oxygen on CoMn2O4, which promotes their activation. The dispersion of Pd further strengthens the low-temperature reducibility along with more active surface oxygen species and lower apparent activation energy. The optimum 1 wt% Pd/h-Al@4CMO catalyst possesses the lowest apparent activation energy for toluene of 77.4 kJ mol−1, showing the relatively best catalytic activity for VOC oxidation, reaching 100% toluene, benzene, and ethyl acetate conversion at 165, 160, and 155 °C, respectively. Meanwhile, the 1 wt% Pd/h-Al@4CMO sample possesses excellent catalytic stability, outstanding selectivity, and good moisture tolerance, which is an effective candidate for eliminating VOCs contaminants.
Read full abstract