Most maritime habitats contain microplastic (MPs) contamination. The quality of the benthic ecosystem's habitat is declining as MPs accumulate in marine system. The contamination of MPs must therefore be investigated. We studied MPs pollution in the Mahi River, estuary, and macrobenthos. In the present study, the abundance of MPs fragments gradually decreased from the high tide zone to the low tide zone and muddy sediment has high MPsconcentrations due to sediment characteristics and particle size. The majority of sediment and biota MPs were fibrous and black. MPs in both silt and biota have identical chemical compositions (modified cellulose), shapes, and colors. A significant source of pollutants and MPs fluxing into the ocean is well within the river system. Perinereis aibuhitensis ingested the most MPs out of 11 species, whereas Amphipods did not show any presence of MPs. Our findings showed that functional characteristics are essential for macrobenthos MPs intake. MPs in macrobenthos are high due to biological functions such as feeding, ecological groups, feeding mechanisms, body size, and bioturbation. MPs in marine sediment and organisms aretracked down to the Mahi River exceeding 50km. The present work has investigated the idea that the macrobenthos that live in the sediment are ingesting the MPs that are building up there and this ingestion relies on the macrobenthos' functional characteristics.