ortho-Fluorothiophenol (o-FTP) photodissociates through the well-known πσ* process. The fluorine atom of o-FTP introduces a feature in the photodissociation of o-FTP that does not occur in most other πσ* processes because the fluorine atom can form a hydrogen bond with the hydrogen atom of the SH group. Theoretical computations can serve as a good way to study these reactions because they usually proceed very quickly, and the current spectroscopies cannot probe the details of the processes as thoroughly as theory can. Here we use completely renormalized equation-of-motion coupled cluster theory with single and double excitations and a quasiperturbative treatment of connected triple excitations (CR-EOM-CCSD(T)) and quasidegenerate perturbation theory, in particular extended multistate complete-active-space second-order perturbation theory (XMS- CASPT2), to calculate the four lowest singlet states of o-FTP and hybrid density functional theory to optimize the geometries of the two lowest singlet states. We find that ten active electrons in nine active orbitals are sufficient to provide a good reference function for all four states. We find that the ground electronic state and the first excited singlet state both exhibit strongly bent hydrogen bonds. We also use density functional theory with the Tamm-Dancoff approximation and the SMD solvation model to successfully simulate the electronic spectrum of o-FTP in n-hexane solvent.
Read full abstract