Ghrelin, the endogenous ligand of the GH secretagogue receptor (GHS-R), is a newly identified, ubiquitously expressed molecule that has been involved in a wide array of endocrine and nonendocrine functions, including cell proliferation. In this context, our group recently reported the expression of ghrelin and its functional receptor, the GHS-R type 1a, in the human ovary and testis as well as several testicular tumors. Ovarian malignancies, however, remain unexplored. Notably, a vast majority of ovarian tumors derive from the surface epithelium, which originates from the celomic epithelium. Considering the proven expression of ghrelin in the human ovary, and its reported effects in the proliferative activity of different cancer cell lines, we aimed at evaluating whether the ovarian surface epithelium as well as related reproductive structures and tumors are potential targets of ghrelin. To this end, expression of GHS-R1a was analyzed by immunohistochemistry in a panel of normal, metaplastic, and neoplastic tissues. Uniform GHS-R1a immunostaining was detected throughout the ovarian surface epithelium. Likewise, ciliated cells within the fallopian tube epithelium showed strong GHS-R1a expression. In contrast, other celomic derivatives, such as endometrium and endocervix, were negative for GHS-R1a immunoreactivity. In keeping with data from normal tissues, inclusion cysts from the surface epithelium expressed GHS-R1a. Similarly, benign serous tumors resembling fallopian tube epithelium were also positive, whereas serous cystadenocarcinomas showed GHS-R1a expression only in highly differentiated specimens. In contrast, other neoplasms, such as mucinous cystadenomas and cystadenocarcinomas, endometrioid tumors, clear cell carcinomas, and Brenner tumors, did not express GHS-R1a. In conclusion, our results demonstrate that the ovarian surface epithelium and related tumors are potential targets for systemic or locally produced ghrelin because they express the functional type 1a GHS-R. Considering the relevant role of the ovarian surface epithelium in key physiological events (such as ovulation) and neoplastic transformation of the ovary, the potential actions of ghrelin in those phenomena merit further investigation.
Read full abstract