Cardiac papillary fibroelastomas (CPFs) are rare benign cardiac tumors typically found on the heart valves. The previously published data on the CPF focused on its clinical presentation, optimal management, and prognosis. However, histogenesis of these lesions remains controversial. Accordingly, the aim of this study was to establish the role of endocardial endothelium (EE) in CPF formation. Four CPF tumors removed from the right atrioventricular valves were analyzed using hematoxylin & eosin, orcein, and Masson trichrome staining together with immunochemistry for CD-34, CD-68, vimentin, vWF and a-SMA. Moreover, conventional transmission electron microscopy was used for morphological analysis and a-SMA presence confirmation. Ultrastructural morphology, immunohisto- and immunocytochemical analyses indicated that cells covering collagenous core have an endothelial origin. Some endocardial endothelium cells have the potential to undergo a transition to mesenchymal cells. Moreover, the abundant presence of extracellular vesicles may indicate an active intercellular communication. Within the intermediate translucent zone, amorphous substances with monocytes/macrophage-like cells and fibroblastic cells were found. Finally, within collagenous core activated (myo)fibroblasts were observed. Our study demonstrated that the endocardial endothelium of the CPF was "double-sided", i.e., it presented both endothelial and mesenchymal cell characteristics. Another finding was the presence of monocytes, and macrophages which were integrated into CPF core and displayed features of a fibroblast that have been shown to contribute to extracellular matrix production. This could be interpreted as being attributed to the CPF histogenesis.
Read full abstract