Deleterious germline mutations in multiple genes confer an increased breast cancer (BC) risk. Immunohistochemical (IHC) expression of protein products of mutated high-risk genes has not been investigated in BC. We hypothesized that pathogenic mutations may lead to an abnormal IHC expression pattern in the tumor cells. BCs with deleterious germline mutations in CHEK2, ATM, PALB2 &PTEN were identified. Immunohistochemistry was performed using Dako staining platform on formalin fixed paraffin embedded tumor tissue. Primary antibodies for PALB2 (ab202970), ATM [2C1(1A10)}, CHK2 (EPR4325), and PTEN (138G6) proteins were used for BCs with respective deleterious mutations. IHC expression was assessed in tumor and adjacent benign breast tissue. Total 27 BCs with 10 CHEK2, 9 ATM, 6 PALB2 & 2 PTEN deleterious germline mutations were identified. IHC staining was performed on 8 CHEK2, 7 ATM, 6 PALB2 & 2 PTEN cases. Abnormal CHEK2 IHC staining was identified in 7/8(88%) BCs. Three distinct CHK2 IHC patterns were noted: 1) Strong diffuse nuclear positivity (5 BC), 2) Null-pattern (2 BC), & 3) Normal breast–like staining in 1 BC Four of 5 (80%) strong CHK2 staining BC had missense CHEK2 mutations. Null-pattern was present with a missense & a frameshift mutation. Normal breast-like CHEK2 IHC staining pattern was present in 1 BC with CHEK2 frameshift mutation. Loss of nuclear/cytoplasmic PTEN IHC expression was noted in 2 in-situ carcinomas. Abnormal PTEN and CHK2 IHC were present in atypical ductal hyperplasia and flat epithelial atypia. ATM and PALB2 IHC expression patterns were similar in tumor cells and benign breast epithelium: mild to moderate intensity nuclear and cytoplasmic staining. We report abnormal CHEK2 IHC expression in 88% of BCs with pathogenic CHEK2 mutations. With PTEN and CHEK2 pathogenic mutations, abnormal IHC patterns are seen in early atypical proliferative lesions. IHC may be applied to identify CHEK2 &PTEN mutated BCs and precursor lesions.