Apolipoprotein E (ApoE) is the main cholesterol carrier of the brain and the ε4 gene variant (APOE4) is the most prevalent genetic risk factor for Alzheimer's disease (AD), increasing risk up to 15-fold. Several studies indicate that APOE4 modulates critical factors for neuronal function, including brain-derived neurotrophic factor (BDNF) and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α). Both proteins show exercise-induced upregulation, which is presumed to mediate many of the beneficial effects of physical activity including improved cognition; however, there is variability in results between individuals potentially in-part due to genetic variations including APOE isoform. This study aimed to determine if the two most prevalent human APOE isoforms influence adaptive responses to exercise-training. Targeted replacement mice, homozygous for either APOE3 or APOE4 were randomized into exercised and sedentary groups. Baseline locomotor function and voluntary wheel-running behavior was reduced in APOE4 mice. Exercised groups were subjected to daily treadmill running for 8 weeks. ApoE protein in brain cortex was significantly increased by exercise in both genotypes. PGC-1α mRNA levels in brain cortex were significantly lower in APOE4 mice, and only tended to increase with exercise in both genotypes. Hippocampal BDNF protein were similar between genotypes and was not significantly modulated by treadmill running. Behavioral and biochemical variations between APOE3 and APOE4 mice likely contribute to the differential risk for neurological and vascular diseases and the exercise-induced increase in ApoE levels suggests an added feature of the potential efficacy of physical activity as a preventative and therapeutic strategy for neurogenerative processes in both genotypes.
Read full abstract