Trigeminal neuralgia (TN) is a debilitating condition characterized by sudden, excruciating facial pain due to neurovascular compression of the trigeminal nerve. Stent deployment can change the course of the superior cerebellar artery upwards, possibly releasing the root entry zone of the trigeminal nerve. We developed a novel stent, the Transform stent, for TN treatment, and evaluated its mechanical properties using benchtop and invitro hemocompatibility tests. We compared the performance of Transform and Enterprise stents in treating TN because they share similar self-expanding closed-cell features in the manufacturing process, are derived from nitinol tubes, and are fabricated through a laser-cutting process, but also because only the safety of Enterprise stents deployed in intracranial arteries has been reported clinically. All benchtop measurements, including radial force, trackability, bending stiffness, and conformability, were performed thrice for each stent model, and their average values are presented. Transform stents showed higher radial forces in vessels of diameters ranging from 1.0mm than Enterprise stents. The trackability of the Transform stent was better than that of the Enterprise stent in a neurovascular model. Bending stiffness was stronger in the Transform stent whereas conformability was superior in the Enterprise stent. No significant thrombogenic issues were observed in the invitro hemocompatibility tests. This study demonstrated the Transform stent as a potential option and paved the way for innovative endovascular approaches for the future TN treatment. Namely, the study confirmed that the characteristics of Transform stents at benchtop and invitro evaluations may be used as a first step for studies such as invivo pre- and clinical studies.
Read full abstract