The Bacteroidota bacterium, Chryseobacterium sp. strain PMSZPI isolated from sub-surface soil of uranium ore deposit was shown to move on solid surfaces via gliding motility resulting in the formation of thin spreading colonies. In this study, we attempted to understand the influence of the surfaces, soft or hard/rigid, on the motility behaviour of PMSZPI cells. The computational tool T9GPred in combination with LC-MS/MS analysis established the presence of orthologs of vital gliding motility proteins in PMSZPI. We analyzed the single cell or population motility phenotypes of PMSZPI under spreading and non-spreading conditions. A low percentage of agar or soft agar (0.35%) with low nutrient levels induced more active gliding motility in individual cells leading to increased colony spreading. Microscopic analyses indicated the self-assembly of the gliding cells into irregular edged or spherical microcolonies based on the agar concentration. Cells moved at a speed of 0.2 to 0.6 µm s-1 on low-percentage gliding permissive agar (0.35%) surface in contrast to significant inhibition of motility on rigid or hard agar (1.5%) surface. RNA sequencing and real-time quantitative PCR (qPCR) analysis revealed increased expression of gliding motility genes under low agar conditions consistent with increased spreading behaviour. These findings provide the first glimpse into the gliding motility behaviour of a Bacteroidota bacterium from metal enriched environment that apparently could have implications on bacterial adaptation to changing surface environments.
Read full abstract