Abstract
AbstractFire accidents in buildings are occurring and claiming thousands of lives each year. Due to various architectural designs, fire hazards would be unique to each building layout. This paper discusses how fire hazard varies with the arrangement of the fuel inside buildings. To comprehensively present the effect of fuel distribution on fire behaviour, results from large‐scale experiments, bench‐scale experiments, empirical correlations, and numerical studies are provided. In large‐scale fire tests, two different cases of wood cribs were tested to demonstrate the effects of porosity on heat generation and fire spread behaviour. Due to the limitations of experimental conditions, the variation in heat release rate attributable to differences in fuel porosity and surface area has been also qualitatively investigated using a cone calorimeter test. To bring the gap between experimental observations and real‐word scenarios, a numerical study is also performed. This study further explores the effects of fuel distribution (considering porosity and surface area of fuel throughout the compartment) and ventilation on fire spread beyond the fire compartment. The computational fluid dynamics (CFD) simulations show how the distribution of fuel in different ways can lead fire to spread beyond its origin, as observed in many fire accidents. The paper suggests that designers should consider such critical fire scenarios in performance‐based design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.