AbstractSoil shrinkage characteristic curves are used to describe the shrinkage behavior and hydraulic properties of unsaturated soils. To construct soil shrinkage characteristic curves, a high‐data‐density measurement method is needed that relates water content to soil volume changes. We present a fully automated soil shrinkage measurement setup, based on the simplified evaporation method, to characterize the shrinkage behavior of undisturbed natural expansive clay soils. The high data density creates the opportunity to produce soil shrinkage characteristic curves without the need for a mathematical model. The technique allows for resaturation of the samples after drying, enabling differentiation between reversible and irreversible shrinkage. The setup consists of the commercialized HYPROP2 apparatus combined with optical distance sensors to measure the horizontal and vertical dimensions of the samples, yielding data on the sample volume, weight, and soil water suction. The measurement frequency is once per 10 min, and the measurement period is up to 4 weeks, providing a detailed time series of the drying and shrinkage characteristics. The setup can capture the different shrinkage phases and offers the opportunity to relate the soil shrinkage characteristic curve to soil water suction. The measurement data acquisition rate and accuracy enable detailed interpretation of soil water retention curves for nonrigid soils and are shown to be essential for understanding and quantifying the shrinkage potential of several types of deposits.
Read full abstract