SLC16A3/monocarboxylate transporter 4 (MCT4) regulates intracellular lactate transport and is highly expressed in many tumors, indicating poor prognosis. It may be related to inducing hypoxia, apoptosis and other mechanisms, but the study of MCT4 in HCC is far from complete. In this study, we first analyzed the expression of SLC16A3 in HCC tumor and non-tumor tissue samples based on TCGA data and immunohistochemistry. Subsequently, the effects of SLC16A3 expression on cell proliferation and invasion were analyzed using hepatocellular carcinoma (HCC) lines, and Western blot (WB) analysis was performed to explore the changes in pathway proteins and ferroptosis proteins. Finally, the drug sensitivity was tested by CCK8 kit. We found that SLC16A3 was significantly upregulated in tumor tissues, and was significantly correlated with TNM stage, histological grade, and macrovascular invasion. TCGA data and WB analysis showed that the high expression of SLC16A3 induced hypoxia, and knockdown could reverse hypoxia and inhibit ERK phosphorylation, thus limiting the malignant behavior of HCC cells. Moreover, knockdown of SLC16A3 significantly increased the level of lipid peroxidation and reactive oxygen species (ROS), while the expressions of GPX4, DHODH and SLC7A11 were inhibited. The expression of SLC16A3 affected the sensitivity of HCC cells to chemotherapy and targeted drugs, and RNA sequencing data suggested that the expression level influenced tumor microenvironment and response to immunotherapy. So, we draw a conclude that SLC16A3 is associated with poor prognosis of HCC. Inhibition of SLC16A3 expression is a potential therapeutic target for HCC.