The role of the hierarchical organization of the suprachiasmatic nucleus (SCN) in its functioning, jet lag, and the light treatment of jet lag remains poorly understood. Using the core-shell model, we mimic collective behavior of the core and shell populations of the SCN oscillators in transient states after rapid traveling east and west. The existence of a special region of slow dynamical states of the SCN oscillators can explain phenomena such as the east-west asymmetry of jet lag, instances when entrainment to an advance is via delay shifts, and the dynamics of jet lag recovery time. If jet lag brings the SCN state into this region, it will take a long time to leave it and restore synchronization among oscillators. We show that the population of oscillators in the core responds quickly to a rapid phase shift of the light-dark cycle, in contrast to the shell, which responds slowly. A slow recovery of the synchronization among the shell oscillators in transient states may strongly affect reentrainment in peripheral tissues and behavioral rhythms. We discuss the relationship between molecular, electrical, and behavioral rhythms. We also describe how light pulses affect the SCN and analyze the efficiency of the light treatment in facilitating the adaptation of the SCN to a new time zone. Light pulses of a moderate duration and intensity reduce the recovery time after traveling east, but not west. However, long duration and high intensity of light pulses are more detrimental than beneficial for speeding up reentrainment. The results of the core-shell model are compared with experimental data and other biologically motivated models of the SCN.
Read full abstract