BiVO4 (BVO), as a visible light responsive semiconductor material, has been widely employed in the field of photocatalysis. However, monoclinic BVO is afflicted by a high recombination rate of photogenerated charge carriers and poor charge transport capability, resulting in low charge utilization efficiency. Constructing heterostructures for interface modification of BVO is an effective strategy to improve photocatalytic performance. Herein, amorphous/crystalline SrTiO3/BiVO4 (STO/BVO) layered film nanoheterostructures have been successfully fabricated on the (001) yttrium stabilized zirconia substrate by magnetron sputtering. Under 440 nm monochromatic light irradiation, the H2O2 production rate of the composite film is increased by 1.2 times compared to pure BVO. The type II heterostructure composed of STO and BVO accomplishes selective interface hole transport from BVO to STO, promoting the separation of space charges. Additionally, the interaction between amorphous/crystalline interfaces effectively suppresses the photocorrosion of BVO and strengthens the stability of the film, which is of great significance for studying charge transport behavior and photocatalytic mechanisms.
Read full abstract