Memristive devices, particularly resistive random access memory (RRAM) cells based on hafnium oxide (HfO₂) dielectrics, exhibit promising characteristics for a wide range of applications. In spite of their potential, issues related to intrinsic variability and the need for precise simulation tools and modeling methods remain a medium-term hurdle. This study addresses these challenges by investigating the resistive switching (RS) behavior of different 1T1R HfO₂-based memristive devices under various experimental conditions. Through a comprehensive experimental analysis, we extract RS parameters using different numerical techniques to understand the cycle-to-cycle (C2C) and device-to-device (D2D) variability. Additionally, we employ advanced simulation methodologies, including circuit breaker-based 3D simulation, to shed light on our experimental findings and provide a theoretical framework to disentangle the switching phenomena. Our results offer valuable insights into the RS mechanisms and variability, contributing to the improvement of robust parameter extraction methods, which are essential for the industrial application of memristive devices.
Read full abstract