Beer is a popular beverage consumed globally, and studies have emphasized the benefits of moderate consumption as well as its sensory effects on consumers. Color is a crucial sensory attribute, being the first aspect a consumer notices when assessing a beer's quality. This review seeks to offer detailed insights into how brewing methods, raw materials, and the chemical diversity of beer influence the production of beer color. The chemical mechanisms responsible for color development and how consumers and color systems perceive the color of beer were assessed. A systematic review following the PRISMA methodology, coupled with a bibliometric analysis, was performed using (Rayyan 2022) and (VOSviewer 1.6.20) software to assess and evaluate the scientific research retrieved from the Web of Science Core Collection. The findings highlight the significant roles of malt types, heat brewing processes, control of chemical parameters, and innovative brewing techniques in conventional beer color production. Novel chromophores like perlolyrine, pyrrolothiazolate, and furpenthiazinate are thought to affect Pilsen-style beers, along with melanoidins, Strecker aldehydes, and 5-hydroxymethylfurfural (HMF) in conventional beers. In craft beers, such as fruit- or herb-based beers, flavonoids like anthocyanins, along with other natural pigments and synthetic colorants, are identified as the primary sources of color. However, studies related to the influence of chromophores like perlolyrine, pyrrolothiazolate, and furpenthiazinate on beer color are scarce, and emerging additives, such as pigments from microorganisms, spices, exotic herbs, and leaves of plants, on craft beer offer insights for future research.