The concentration of selenium (Se) in agricultural products primarily depends on the concentration of Se in soil and the ability of plants to accumulate Se. Selenium deficiency not only leads to decreased body resistance, but also increases the risk of cancer. The form and concentration of bioavailable Se is important for diet. The present study was carried out via field experiment with wheat and broad beans in soil of different Se concentrations (0, 1.12, and 11.2 kg·ha−1), which was determined based on the national standard and the team’s previous experience. Results indicated that the concentration of Se in the edible organs of wheat was higher than in broad bean, while the enriched Se concentration in the root of broad bean was more than twice and three times higher than that of wheat at medium and high levels of Se, respectively. Selenomethionine, which accounted for over half of the total Se speciations, was the dominant species in the edible parts of the two crops, followed by Selenocystine and methylselenocysteine. Through the analysis of the rhizosphere soil, it was found that Fe-Mn oxide-bound Se exceeded 80% of the total Se. Additionally, there was a significant linear correlation between the Se content in the edible parts of the two crops and the Se content in the soil. Findings suggested that wheat was more favorable than broad beans as Se supplement crops in a Se-supplied field.