The study investigates the nonlinear contagion, tail dependence, and Granger causality relations with TAR-TR-GARCH–copula causality methods for daily Bitcoin, Fintech, energy consumption, and CO2 emissions in addition to examining these series for entropy, long-range dependence, fractionality, complexity, chaos, and nonlinearity with a dataset spanning from 25 June 2012 to 22 June 2024. Empirical results from Shannon, Rényi, and Tsallis entropy measures; Kolmogorov–Sinai complexity; Hurst–Mandelbrot and Lo’s R/S tests; and Phillips’ and Geweke and Porter-Hudak’s fractionality tests confirm the presence of entropy, complexity, fractionality, and long-range dependence. Further, the largest Lyapunov exponents and Hurst exponents confirm chaos across all series. The BDS test confirms nonlinearity, and ARCH-type heteroskedasticity test results support the basis for the use of novel TAR-TR-GARCH–copula causality. The model estimation results indicate moderate to strong levels of positive and asymmetric tail dependence and contagion under distinct regimes. The novel method captures nonlinear causality dynamics from Bitcoin and Fintech to energy consumption and CO2 emissions as well as causality from energy consumption to CO2 emissions and bidirectional feedback between Bitcoin and Fintech. These findings underscore the need to take the chaotic and complex dynamics seriously in policy and decision formulation and the necessity of eco-friendly technologies for Bitcoin and Fintech.