BackgroundThe effects of acute anemia on neuronal cells and the safe limits of hematocrit are not well established. The objective of this study was to evaluate neuronal pro- and anti-apoptotic Bax and Bcl-x proteins, caspase-3 and -9 activity, and DNA fragmentation after acute normovolemic hemodilution (ANH).MethodsTwenty-four pigs were anesthetized and randomized into 4 groups: Sham, ANH to 15% hematocrit (ANH15%), ANH to 10% hematocrit (ANH10%) and hypoxia (Hx). ANH was achieved by simultaneous blood withdrawal and hydroxyethyl starch infusion. Hx consisted of ventilation with a 6% inspired oxygen fraction for 60 minutes. Bax and Bcl-x proteins as well as DNA fragmentation were evaluated in cortical nuclear and mitochondrial fractions. Caspase-3 and -9 activity was evaluated in the cortical mitochondrial and hippocampal cytosolic fractions. The data were compared using analysis of variance followed by Tukey’s test (P<0.05).ResultsNo changes were observed in Bax protein expression after hemodilution in the ANH15% and ANH10% groups compared to the Sham group. Bax expression in the Hx group was increased in the nuclear and mitochondrial fractions compared to all other groups. No significant difference was observed in Bcl-x expression. Caspase-3 and -9 activity in the cytosolic and mitochondrial fractions was different in the Hx group compared to all other groups. No statistical significance in DNA fragmentation was found among the Sham, ANH15% or ANH10% groups.ConclusionANH to 10 and 15% hematocrit did not induce alterations in apoptosis precursors, suggesting that cerebral oxygenation was preserved during these anemic states.