Circular microphone arrays have been used for multi-speaker localization in computational auditory scene analysis, for their high flexibility in sound field analysis, including the generation of frequency-invariant eigenbeams for wideband acoustic sources. However, the localization performance of existing circular harmonic approaches, such as circular harmonics beamformer (CHB) depends strongly on the physical characteristics (such as shape) of sensor arrays, and the level of uncertainties presented in acoustic environments (such as background noise, room reverberation, and the number of sources). These uncertainties may limit the performance or practical application of the speaker localization algorithms. To address these issues, in this paper, we present a new indoor multi-speaker localization method in the circular harmonic domain based on the acoustic holography beamforming (AHB) technique and the Bayesian nonparametrics (BNP) method. More specifically, we use the AHB technique, which combines the delay-and-sum beamforming with acoustic-holography-based virtual sensing, to generate direction of arrival (DOA) measurements in the time-frequency (TF) domain, and then design a BNP algorithm based on the infinite Gaussian mixture model (IGMM) to estimate the DOAs of the individual sources without the prior knowledge about the number of sources. These estimates may degrade in the presence of room reverberation and background noise. To address this issue, we develop a robust TF bin selection and permutation method on the basis of mixture weights, using power, power ratio and local variance estimated at each TF bin. Experiments performed on both simulated and real-data show that our method gives significantly better performance, than four recent baseline methods, in a variety of noise and reverberation levels, in terms of the root-mean-square error (RMSE) of the DOA estimation and the source detecting success rate.