AbstractThe presence of free water molecules in the aqueous electrolyte leads to serious side reactions at the interface, easy dissolution of the cathode material, and uncontrolled growth of zinc dendrites in Zn‐ion batteries, which hinders their practical applications. Here, we propose a type of SiO2‐based soggy‐sand electrolyte (ZnSO4+MnSO4 electrolyte with SiO2, SiO2‐ZMSO4) and focus on the effect of the SiO2 nanoparticle size on the performance of soggy‐sand electrolyte. It is found that SiO2 with smaller nanoparticle size provides higher porosity, and the SiO2 network‐formed can effectively trap the free water in the electrolyte, which increases the ionic conductivity of electrolyte, widens working voltage window, and decreases the internal resistance of batteries. As a result, the Zn//MnO2 batteries with 20 nm SiO2‐based soggy‐sand electrolyte show stable cycling performance and rate capacities. The specific capacity of the battery can be maintained at 198.5 mAh g−1 after 1200 cycles at 1 A g−1 without capacity degradation. The specific capacity can be increased by 100 mAh g−1 even at a high rate of 5 A g−1. This study provides the rule of particle selection for the development of aqueous soggy‐sand electrolytes used in aqueous rechargeable batteries.