Lithium-ion rechargeable batteries are widely used in various electronic products and equipment due to their immense benefits in power supplying. The exact remaining useful life (RUL) prediction of lithium-ion batteries has shown excellent achievements in preventing severe economic and security consequences incurred in failing to provide necessary power levels. Recently, the nonlinear-drifted fractional Brownian motion made quite a splash in RUL prediction, since its first hitting time distribution can be approximated by weak convergence theorem and time-space transformation. However, the previous RUL prediction methods based on fractional Brownian motion only considered current state measurement. In this paper, a prediction framework based on nonlinear-drifted fractional Brownian motion with multiple hidden state variables is put forward to estimate RUL. Specifically, all the parameters of nonlinear function are defined as specific hidden state variables of lithium-ion battery degradation model, and all the state measurements are used to posteriorly estimate the distribution of the multiple hidden state variables by unscented particle filter algorithm. Four sets of lithium-ion battery degradation data provided by NASA Ames Research Center are used to validate the proposed prediction framework. According to comparison study with other methods, the proposed prediction framework demonstrates greater precision in the RUL prediction.
Read full abstract