In this article, an analytical method is presented to achieve maximum power point tracking (MPPT) for a solar photovoltaic (PV) array-based water pumping system comprising of an induction motor drive (IMD). The gating signals are generated using the space vector pulsewidth modulation (SVPWM) method for three-phase inverter. This analytical MPPT control (AMPPTC) scheme exhibits fast dynamic performance and minimum overshoot with the IMD-based water pumping system. Additionally, the AMPPTC scheme provides absolute steady-state robustness under variations in solar irradiance/parameters that improves the stability of the system under a wide speed range of IMD and makes the system insensitive toward parameter variations. The dc-link voltage regulation is assured by three-phase inverter, and MPPT regulation is achieved by the boost converter. This two-stage PV system, with MPPT controlled boost converter and SVPWM-based three-phase inverter operating the pump, is modeled and simulated in Simulink environment of MATLAB. The performance and robustness of the AMPPTC-based PV water pumping system are corroborated through the laboratory experimentation.