This study aims to find an appropriate system for microgeneration energy investments and identify optimal renewable energy alternatives for the effectiveness of these projects. In this context, a model is constructed by multi stepwise weight assessment ratio analysis (M-SWARA) and technique for order preference by similarity to ideal solution (TOPSIS) with q-rung orthopair fuzzy sets (q-ROFSs) and golden cut. At the first stage, five different systems are weighted for the effectiveness of the microgeneration energy investments. Secondly, four different renewable energy alternatives are ranked regarding the performance of these projects. In addition, a comparative analysis is also implemented with intuitionistic fuzzy sets (IFSs) and Pythagorean fuzzy sets (PFSs). The findings are the same in all different fuzzy sets that demonstrates the reliability of the findings. It is determined that grid-connected with battery backup is the most important system choice. On the other hand, solar energy is the most appropriate alternative for microgeneration system investments. Grid-connected system should be implemented for the performance of the microgeneration projects. Hence, providing a sustainable access to the electricity can be possible. Sufficient amount of electricity may not be obtained from wind and solar energy because of the climate changes. In this process, grid-connected system can handle this problem effectively.
Read full abstract