Batik is a hereditary cultural heritage that has high aesthetic value and deep philosophy. Currently, Indonesian batik has various types of different motifs and patterns, which are spread in Indonesia with their names and meanings. Batik classification uses Convolutional Neural Network as a pattern recognition method, especially batik image classification. The method used is a literature study, looking at studies from several journals regarding the Convolutional Neural Network Algorithm in Classification and providing conclusions about the usefulness of the algorithm. Analysis This literature study analyzes each journal from previous research related to the Convolutional Neural Network Algorithm in classifying Batik. The results of the analysis, conducted a discussion to better know the characteristics and application of Convolutional Neural Network in the classification of Batik. After discussing, this analysis ends with conclusions about the Convolutional Neural Network algorithm in classifying Batik. Based on previous studies, it can be seen that the convolution neural network can work well for image classification with large datasets. By evaluating the method that has been described by considering the architecture and the level of accuracy, namely getting an accuracy level of 100% with an image size of 128 x 128 and regarding the classification of batik, it shows that image size, image quality, image patterns affect the batik classification process.
Read full abstract