It is widely appreciated that the selection and modulation of locomotor circuits are dependent on the actions of higher-order projection neurons. In the leech, Hirudo medicinalis, locomotion is modulated by a number of cephalic projection neurons that descend from the subesophageal ganglion in the head. Specifically, descending brain interneuron Tr2 functions as a command-like neuron that can terminate or sometimes trigger fictive swimming. In this study, we demonstrate that Tr2 is dye coupled to the dopaminergic neural network distributed in the head brain. These findings represent the first anatomical evidence in support of dopamine (DA) playing a role in the modulation of locomotion in the leech. In addition, we have determined that bath application of DA to the brain and entire nerve cord reliably and rapidly terminates swimming in all preparations exhibiting fictive swimming. By contrast, DA application to nerve cords expressing ongoing fictive crawling does not inhibit this motor rhythm. Furthermore, we show that Tr2 receives rhythmic feedback from the crawl central pattern generator. For example, Tr2 receives inhibitory post-synaptic potentials during the elongation phase of each crawl cycle. When crawling is not expressed, spontaneous inhibitory post-synaptic potentials in Tr2 correlate in time with spontaneous excitatory post-synaptic potentials in the CV motor neuron, a circular muscle excitor that bursts during the elongation phase of crawling. Our data are consistent with the idea that DA biases the nervous system to produce locomotion in the form of crawling.