The study presents ten different exercises covering various computational tools. These exercises are practical applications presented to improve the understanding and skills of students in important concepts of chemical-aided process synthesis. A few exercises aim to build a foundation in computational techniques for chemical engineering undergraduates. The exercises are based on a spreadsheet that covers the design of regression analysis to find the optimum Antoine constants, array calculation for multicomponent distillation material balance, and the generation of a Gantt chart to plan and study the activities of batch processes. The other exercises included an introduction to process simulation, simulation, and reactor rating, and a simulation of multicomponent shortcut distillation. These exercises provide students with hands-on experience in utilizing process simulation software essential for analysing and optimizing chemical processes in real-world scenarios. The exercises also included the design of a heat exchanger network and solving a linear programming problem. An anonymous survey was collected from the cohort that had undergone the exercises, and the practical grades were compared with the batch that did not study the proposed exercises. Additionally, student feedback on practical exercises was collected. Based on the experience of the course coordinator and the collected feedback from participants, it was clear that the exercises helped students to inculcate critical thinking and self-learning abilities. An article essentially sheds light on the computer-aided practical exercises that enable chemical engineering graduates to engage in lifelong learning.