Energy grids play an important role in modern society. In recent years, there was a shift from using few central power sources to using many small power sources, due to efforts to increase the percentage of renewable energies. Therefore, the properties of extremely stable and unstable networks are of interest. In this paper, distributions of the basin stability, a nonlinear measure to quantify the ability of a power grid to recover from perturbations, and its correlations with other measurable quantities, namely, diameter, flow backup capacity, power-sign ratio, universal order parameter, biconnected component, clustering coefficient, two core, and leafs, are studied. The energy grids are modeled by an Erdős-Rényi random graph ensemble and a small-world graph ensemble, where the latter is defined in such a way that it does not exhibit dead ends. Using large-deviation techniques, we reach very improbable power grids that are extremely stable as well as ones that are extremely unstable. The 1/t-algorithm, a variation of Wang-Landau, which does not suffer from error saturation, and additional entropic sampling are used to achieve good precision even for very small probabilities ranging over eight decades.