Heavy metal ions (HMIs) have been widely applied in various industries because of their excellent physicochemical properties. However, their discharging without appropriate treatment brought about serious pollution problems. So it is desirable but challenging to rapidly and completely clean up these toxic pollutants from water, especially utilizing environmentally friendly and naturally rich biomass materials. In this work, we prepared nanocellulose/carbon dots/magnesium hydroxide (CCMg) ternary composite using cotton via a simple hydrothermal method. The removal mechanism towards Cd2+ and Cu2+ was investigated using a combination of experimental techniques and density functional theory calculations. CCMg shows a good ability to remove HMIs. It is realized that the interaction between each component of CCMg and cadmium nitrate is mainly of hydrogen/dative bonds. Cadmium nitrate is preferentially enriched by the Mg(OH)2 moiety, proved by calculated thermodynamics, interfacial interactions and charges. After transformation, the cadmium carbonate precipitate is fixed on the surface by nanocellulose (NC) via chemical coupling; and of interest is that copper ion precipitates in the form of basic sulfate. Due to its high adsorption effect and simple recovery operation, CCMg is having a wide range of application prospects as a water treatment agent.
Read full abstract