Mobile edge computing (MEC) is crucial in applications such as intelligent transportation, innovative healthcare, and smart cities. By deploying servers with computing and storage capabilities at the network edge, MEC enables low-latency services close to end users. However, the configuration of edge servers needs to meet the low-latency requirements and effectively balance the servers’ workloads. This paper proposes an adaptive layout and dynamic optimization method, modeling the edge server layout problem as a Markov decision process. It introduces a workload-based server placement rule that adjusts the locations of edge servers according to the load of base stations, enabling the learning of low-latency and load-balanced server layout strategies. Experimental validation on a real dataset from Shanghai Telecom shows that the proposed algorithm improves average latency performance by about 40% compared to existing technologies, and enhances workload balancing performance by about 17%.
Read full abstract