BackgroundHippocampal volume (HV) is sensitive to environmental influences. Under normative conditions in humans, HV increases linearly into childhood and asymptotes in early adulthood. Studies of humans and nonhuman animals have provided evidence of inverse relationships between several measures of stress and HV. MethodsUsing structural equation modeling, this study aimed to characterize the relationships of age, basal cortisol, biological sex, and lifetime perceived stress with bilateral HV in a sample of healthy adolescents and adolescents at clinical high risk for psychosis (CHR-P) (N = 571, 43% female; age range = 12–19.9 years). This sample included 469 individuals at CHR-P and 102 healthy comparison participants from the combined baseline cohorts of the second and third NAPLS (North American Prodrome Longitudinal Study). ResultsA structural model that constrained the individual effects of basal cortisol and perceived stress to single path coefficients, and freely estimated the effects of age and biological sex in group models, optimized model fit and parsimony relative to other candidate models. Significant inverse relationships between basal cortisol and bilateral HV were observed in adolescents at CHR-P and healthy comparison participants. Significant sex differences in bilateral HV were also observed, with females demonstrating smaller HV than males in both groups. ConclusionsMultigroup structural equation modeling revealed heterogeneity in the relationships of age and biological sex with basal cortisol, lifetime perceived stress, and bilateral HV in individuals at CHR-P and healthy comparison participants. Moreover, the findings support previous literature indicating that elevated basal cortisol is a nonspecific risk factor for reduced HV.