Plants employ a diverse array of responses to counteract and defend against stressors. Utilizing quantitative proteomic analysis allows for the exploration of global proteomic dynamics in cells and tissues at specific time points. In order to comprehend the intricate mechanisms underlying plant responses, we conducted a proteomic investigation of peanut hairy root cultures induced with a combination of chitosan (CHT), methyl jasmonate (MeJA), and cyclodextrin (CD) at multiple time points. The study identified 292, 317, and 327 differentially expressed proteins (DEPs) in hairy root tissues at 24-, 48-, and 72 h intervals post-elicitation, respectively. Principal component analysis (PCA) distinctly clustered each timepoint of treatment and the control group. Gene ontology (GO) enrichment analysis highlighted terms such as "responding to biotic stimuli" and "defense response" during the early response, with the upregulation of Heat shock cognate 70 kDa protein, Wound-induced protein 1, and Disease resistance-like protein. The 72 h time point specifically showed an upregulation of superoxide dismutase (SOD) and auxin response factor, indicating a delayed response and illustrating how hairy roots adapt to stress in later stages. Furthermore, GO enrichment at later stages implicated alterations in protein production, involving both synthesis and degradation processes. Proteolytic enzymes, including those in the ubiquitin/proteasome pathway, were identified as facilitating protein degradation. The detection of small molecular weight (MW) peptides in the culture medium of elicited hairy roots suggested their origin from the proteolytic cleavage of precursor proteins. The GO enrichment of culture medium peptides pointed towards involvement in signaling pathways. The suggested signaling cascade acts as a potential link that connects the recognition of stress to the initiation of appropriate response to external stressors. This approach delves into dynamic changes in protein expression and secretion patterns over various intervals, providing insights into the plant's adaptive response to external stress.
Read full abstract