Abstract

Nucleotide-binding leucine-rich repeat (NLR) receptor-mediated immunity includes rapid production of reactive oxygen species (ROS) and transcriptional reprogramming, which is controlled by transcription factors (TFs). Although some TFs have been reported to participate in NLR-mediated immune response, most TFs are transcriptional activators, and whether and how transcriptional repressors regulate NLR-mediated plant defenses remains largely unknown. Here, we show that the Alfin-like 7 (AL7) interacts with N NLR and functions as a transcriptional repressor. Knockdown and knockout of AL7 compromise N NLR-mediated resistance against tobacco mosaic virus, whereas AL7 overexpression enhances defense, indicating a positive regulatory role for AL7 in immunity. AL7 binds to the promoters of ROS scavenging genes to inhibit their transcription during immune responses. Mitogen-activated protein kinases (MAPKs), salicylic acid-induced protein kinase (SIPK), and wound-induced protein kinase (WIPK) directly interact with and phosphorylate AL7, which impairs the AL7-N interaction and enhances its DNA binding activity, which promotes ROS accumulation and enables immune activation. In addition to N, AL7 is also required for the function of other Toll interleukin 1 receptor/nucleotide-binding/leucine-rich repeats (TNLs) including Roq1 and RRS1-R/RPS4. Our findings reveal a hitherto unknown MAPK-AL7 module that negatively regulates ROS scavenging genes to promote NLR-mediated immunity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.