Atomically thin van der Waals (vdW) films provide a material platform for the epitaxial growth of quantum heterostructures. However, unlike the remote epitaxial growth of three-dimensional bulk crystals, the growth of two-dimensional material heterostructures across atomic layers has been limited due to the weak vdW interaction. Here we report the double-sided epitaxy of vdW layered materials through atomic membranes. We grow vdW topological insulators Sb2Te3 and Bi2Se3 by molecular-beam epitaxy on both surfaces of atomically thin graphene or hexagonal boron nitride, which serve as suspended two-dimensional vdW substrate layers. Both homo- and hetero-double-sided vdW topological insulator tunnel junctions are fabricated, with the atomically thin hexagonal boron nitride acting as a crystal-momentum-conserving tunnelling barrier with abrupt and epitaxial interfaces. By performing field-angle-dependent magneto-tunnelling spectroscopy on these devices, we reveal the energy-momentum-spin resonance of massless Dirac electrons tunnelling between helical Landau levels developed in the topological surface states at the interfaces.
Read full abstract