A barotropic primitive-equation model using the finite-element method of space discretization is generalized to allow variable resolution. The overhead incurred in going from a uniform mesh to a variable mesh having the same number of degrees of freedom is found to be approximately 20% overall. The variable-mesh model is used with several grid configurations, each having uniform high resolution over a specified area of interest and lower resolution elsewhere to produce short-term forecasts over this area without the necessity of high resolution everywhere. It is found that the forecast produced on a uniform high-resolution mesh can be essentially reproduced for a limited time over the limited area by a variable-mesh model having only a fraction of the number of degrees of freedom and requiring significantly less computer time. As expected, the period of validity of forecasts on variable meshes can be lengthened by refining the mesh in the outer region. It is concluded that from the point of view of efficiency, accuracy and stability the variable-mesh finite-element technique appears to be well-suited to the practical problem of limited area/time forecasting.