Unsteady cavitating turbulent flow around a NACA66 hydrofoil was simulated using a mass transfer cavitation model and a modified filter-based turbulence model in this paper. The modified filter-based turbulence model can accurately predict the pressure coefficient in midplane and shedding frequency of the unsteady cloud cavitation than standard [Formula: see text]–[Formula: see text] model and filter-based turbulence model. The time evolution of transient cavitation cloud structure predicted by the three-turbulence model was compared. The result which was predicted by the modified filter-based turbulence model is in good agreement with the experimental results. The time evolution of re-entrant jet had been analyzed. The instantaneous wall-pressure evolution on the suction surface (SS) predicted by the modified filter-based turbulence model had been analyzed. The cavitation-vortex interaction had been analyzed in this study. The different effects on the cavitation-vortex interaction of the vortex stretching term, vortex dilatation term and baroclinic torque term in the transport equation of vorticity had been discussed.
Read full abstract