Currently, Arctic sea ice thickness (SIT) data with extensive spatiotemporal coverage primarily comes from satellite observations, including CryoSat-2, Soil Moisture and Ocean Salinity (SMOS), and the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2). The studies of the intercomparison and evaluation of multi-source satellite products in recent years are limited. In this study, three latest version products of ICESat-2, CryoSat-2, and CS2SMOS (a merged product of CryoSat-2 and SMOS) were examined from October to April, between 2018 and 2022. Three types of observation including airborne data from the Operation IceBridge (OIB) and IceBird, and in situ data from Beaufort Gyre Exploration Project (BGEP) are selected as the reference in the evaluation. The intercomparison results show that the mean SIT is generally largest in ICESat-2, second largest in CryoSat-2, and smallest in CS2SMOS. The SIT in CryoSat-2 is closer to the SIT in ICESat-2. The thickness displayed by the three satellite products starts to increase at different freezing months, varying between October and November. The three satellite products demonstrated the strongest agreements in SIT in the Beaufort Sea and Central Arctic regions, and exhibited the most distinct differences in the Barents Sea. In the evaluation with OIB data, three satellite-derived SIT were generally underestimated and CS2SMOS demonstrates the closest match. The evaluation using IceBird data indicates an underestimation for all satellites, with CryoSat-2 showing the best agreement. In the assessment with BGEP data, ICESat-2 displayed a more pronounced degree of overestimation or underestimation compared to the other two satellites, and CS2SMOS exhibited the optimal agreement. Based on the comprehensive consideration, CS2SMOS demonstrated the best performance with the airborne and in situ observational data, followed by CryoSat-2 and ICESat-2. The intercomparison and evaluation results of satellite products can contribute to a further understanding of the accuracies and uncertainties of the latest version SIT retrieval and the appropriate selection and utilization of satellite products.
Read full abstract